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ABSTRACT

Harmonic balance is a powerful technique for the simulation of
mildly nonfineax microwave circuits. This technique has had limited

aPPliC@n for tie malYsis of almost-periodic cifcuits, such as mixers, due
to the difficulties of &ansforming waveforms from the time domain to the
frequency domain and vice versa. In this paper, a new Fourier transform
algorithm for almost-periodic functions (APFT) is developed that is both
efficient and accurate. Unlike previous attempts to solve this problem, the
new afgorithm does not constmin the input frequencies and uses the
theoretically minimum number of time points.

1: INTRODUCTION

Harmonic balance @rdert861 is a powerful technique for the simu-
lation of nonline~ microwave circuits. Harmonic balance requires the
evacuation of the device equations in the frequency domahr for lineru ele-
ments and in the time domain for nonlinear elements. The dkcrete
Fourier @ansform (DFT) is used to provide the conversion between the
two domains when the signals are periodic. Currently there is no satisfac-
tory way to analyze nonlineax circuits such as mixers that have two or
more input signals with arbitrary input frequency and power, and hence
have signals that are nonpenodic.

Signafs in mixers are made up of severaf sinusoids at possibly
nonharrnonicaf Iy related frequencies, and hence are almost periodic

[bo~471. This paper introduces an accurate and efficient algorithrw the
APFT, for computing the forward and inverse Fourier transforms for
ahnost-periodic functions. Unlike previous methods, the APFT does not
constrain the input frequencies and uses the theoretical minimum number
of time points. Also presented will be the implementation of a harmonic
bafance-based circuit simulator that uses the new Fourier transform for
almost-periodic functions.

1.1: Definitions

A waveform x is periodic with period ~ if x(r) = x(t+7) for all t A
waveform is alrrrosr periodic if it can be uniformly approximated by the
sum of at most a countable number of sinusoids [haleSO]. Thus,
wavefor3ns of the form

x(f) = ~ (ficostog + x:sinto&t), (1)
O)keA

where A = {~, 031,0.s2, . } and ~, X~E R, are almost periodic. We
use AP(A) to denote the set of all red-valued afmost-periodic functions
over the set of frequencies A. If A is finite with n elements, it is denoted
An. When working with mixers, A consists of the sum and difference fre-
quencies of usually two independent fundamental frequencies 11, 12 and
their harmonics, though the tiansform that we present is not limited to this
special case. For a mixer, A has the form

A(kl, &) = {to I ro = kk, + l&; k,le{ ,–1, O, 1, }}. (2)

If afl frequencies (ok G A are distinct (i.e. tok # rol for afl k # 1), then there
exists an invertible linear operator F that maps x to X, where

X=[X$,x&fi ,x;, ... ];

this operator is the Fourier transform.

Let x be a real-valued almost-periodic function, xc AZYA). For the
problem of transforming between x and X to be numerically tractable, it is
necessary to make A finite. In the case of a mixer, where A = A(kj, L2),
we assume that the Fourier coefficients of frequencies beyond a given
order H are negligible, so that the truncated set of frequencies becomes

t Atso with IBM T. J. Watson Research Center, Yorktown He,ghh, NY 1059S.
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A~L,, &)={mlo =kkl+~b; lkl+i~l ~~,z~O,l*Oifk<O}

The truncated set has K = Hz + H + 1 frequencies. While the exampks

we present take this fow again, the APFT afgorithm is not limited to this
case.

1.2: The Fourier Transform

By considering only a finite number of frequencies, it is possible to
sample a waveform at a finite number of time points and cafculate its
Fourier coefficients. Since the spaces involved are now finite dimensioned,
the first representation theorem of linear algebra shows that the discrete
Fourier transform (DFT) and its inverse (fDIW) can be viewed as matrices
acting on the vectors of samples and ccefficienfs, respectively. That is,

x~

1 cosro~tl sit303,fl . ‘ cosro~-,tl

~ 1111!

sinto~-ltl ~ X(t,)

1 coso3~f* sintolt2 . “ . cosro~-.~tz sintoK-112 x:
x(tJ

1 costo~fq sinrolf3 . “ coso3K_lt3 sino3K_lf3 : = x(fJ
. . .
. . .
. . X:-1

1 cosrolt~-l sin031tz~.-l “ c0w3K-1t2K_1 sinoh%-1 x~_l x(t~:.q)

(3)

If the frequencies Ok are distinct, this system is invertible (for almost all
choices of time points), and can be written in compact form as ~’X = x.
Inverting ~1 gives rx = X, and so r and I_l are a discrete Fourier
transform pair.

The DFT is a speciat case of (3) in which cok= kor and
tm= rnT/(2K-1), i.e. when the frequencies are all multiples of a single
fundamental and the time points are chosen equafly spaced within its
period. DFT and its inverse, IDFT, have the desirable property of being
well conditioned, which is to say that very littfe error ia generated when
transforming between x and X. From the matrix viewpoint, the high accu-
racy of DFT corresponds to the fact that the rows of rl are orthogonal.
(We will say a bit more about this later.) Unfortunately, DFT and IDFT
are defined only for periodic signals.

Given a finite set AK of distinct frequencies tob and a set of time
points, we will say that r and ~1, are one implementation of the almost-
penodic Fourier mansforrn for AP(A~). To perform either the forwifld
(using r) or inverse (using P) transform requires just a matrix multiply,
or (2K-1)2 operations, once r and ~1 are known, which is the srume
number of operations required by the DFT.

The difficulty is that if the time points are not chosen carefully, 1-1
can be very ill-conditioned. A particularly bad strategy for choosing time
points when signafs are not periodic seems to be that of mafring them
equally spaced. Unlike the periodic case, it is in general impossible to
choose a set of time points over which the sampled sinusoids at frequen-
cies in AK are orthogonal. In facti it is common for evenly sampled
sinusoids at two or more frequencies to be nearly linearly dependmr~
which causes the severe ill-conditioning problems encountered in practice.
The main contribution of this paper is the development of an algorithm
for choosing time points which gives a well-conditioned system. We will
present previous work with the same goal and then present the APFT
algorithm.

1.3: Previous Work

Ushida and Chua [ushida84] use equafly spaced points, but avoid
the ill-conditioning problem by using extra time points. In doing so, the
matrix r* becomes a tall rectangular matix. To make the system square
again, both sides of (3) are multiplied by (rl )T, which results in
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(r])Trlx = (rl)TX.

Thus (3) is converted into a leaat squares problem that is solved in the
traditional manner using the normal equation. Unfortunately, the normal
equation is notoriously ill-conditioned and so a new ill-conditioning prob-
lem may be introduced.

Gilmore [gifmore86] samples ke waveform using several small sets
of equafly spaced time points. The DFT is then applied to each individu-

ally, however these sets have too few time points to prevent alinsing in
the computed spectra. The aliasing is efirninated by ttilng an appropriate
linear combination of the computed spectra. Since the DFT is used, the
method is constrained to periodic signals, though it can be much more
efficient that the standard DFT on sparse spectra. Its numerical stability is
unknown.

2 THEORETICAL BACKGROUND

2.1: Condition Number and OrthonormaUty

It is now necess~ to discuss the conditioning of a system of equa-
tions, a concept afluded to earlier. A good general discussion can be
found in [golub83]. From our perspective, the condition number of a
matrix is im~rtant because it is a measure of how much errors are
amplified during the course of solving a matix equation. For example, in
the presence of no other errors, the uncertainty in the result is given by
the condition number times the roundoff error. Formalfy, the condition
number of a matrix r is defined as K(r)= 11~1llrl\l.

The problem of ill-conditioning in (3) can be visualized by consid-
er~p~~ equation as definin~ a hyperplane in the Euclidian space RN-’.

?.K-l be Such that p, is the if-h row itr rl, then the irfr hyeer-

plane is tfefineti by p~x = .v(t,). Thus, p; is a vector orthogonal to the

hyperplane. The solution to (3) is the intersection of all the hyperplanes.
If the system is degenerate because two or more planes are coincident,
then the intersection is not a single point and the system of equations has
an infinite number of solutions. If there are no coincident hyperplanes, but
two or more of the planes are nearly paraflel, then a unique solution
exists, however very high precision arithmetic wifl be needed to find it
accurately.

Because a system is degenerate if and only if the defining matrix
has zero deterrninan~ it is natural to uy to relate the determinant to the
condition number. In fact, though, there is no direct connection between
determinant and condition number [gohrb83]. But a matrix is afso degen-
erate if and only if there is a linear dependence among its row vectors,
and so it is also natural to suppose ffrat a matrix will have smafl (good)
condition number if its rows are relatively orrhogond (and thus “far”
from being linearly dependent). We now prove a statement along these

lines.

Consider an invertible nxn matrix A. Suppose that the rows a, of A,
regarded as vectors, are neady ortfronoti. In particular, suppose that
each vector has unit length and that the orthogonal component of each
vector a~ with resmct to the space S, spanned by tie Ofhem is at lemt
a s 1 (it would be exactly 1 if the vectors were precisely orthonormal).

Now, when forming the product A-lA = Z, each row of A-’ can be
thought of as determining a linear combination of the rows of A, which
yields a row in the identity mahix — a vector of length 1. Suppose that
the idr element in a row of A-’ had absolute vafue r > I/et. Then the
component of the resulting linear combination in the direction orthogonal
to S, is determined solely by ra~, and will have magnitude greater than
rtr > 1. Since the linear combination was to be a vector of unit length,
this k a contradiction. Thus no element of any row of A-’, and thus no
element of A-l, has absolute value greater than l/a.

From thk it follows that since A= Rm”. IK-lll- (the L norm of A-l)
is no more than tia. Also, the fact that A was to have row vectors of
norm 1 means that 1~1~ is no more than n, so rtrat K(A) S n2/a.

In shot the near-orthonormaf ity of a matrix places an upper bound
on its condition number.

2.2: Condition Number and Time Point Selection

Given a finite set of frequencies AK, w set of N = 2K – 1 time
pointa yields a @ whose row vectors (consisting of a single 1 and a set
of sine-cosine pairs) have norms between K and I+@(K–l), which is ade-
quate to satisfy the essence of the demand above that the row vectors be
of unit length. If we could find a set of time points producing row vectors
that were afso nearly orthogonal, according to the definition above, we
would be assured of having a well-conditioned r.

But the relation between the time points and the orthogonality of the
resultant row vectors is clearly rather involved finding a set of times
which define nearly-orthogonal row vectors seems to be quite difficult.
One approach might be to write down a priori a set of orthogonal vectors
and then look for time poirrta that generate vectors close to these pre-
specitied ones; this is equivalent to defining the approximate phases of
each sine wave and looking for a time where every wave will be in the
appropriate phase. This in turn can be thought of as a set of approximate

equalities modulo 2rr, but it is far from clear under what circumstances a
solution exists or how to go about finding it.

Another approach might be to choose rime points eqrrafly spaced
within a time interval larger than the period corresponding to the smaflest
nonzero frequency in AK. As we show later however, experimentsfly this
method of time-point selection gives the worst results of any method we
tied.

2.3: Condition Number and Aliasing

As mentioned previously, the condition number provides a measure
of how much error is amplified during a calculation. Roundoff is one
source of error in the transform but there is another that is normalfy mnch
larger, and that is error due to aliasing. Afiasing occucs when we truncate
A to make it finite. The Fourier coefficients of the frequencies omitted
from A are presumably small but may not be exactfy O, ~d tfruS tfrese
frequencies make a contribution to the vector x of samples; this contribu-
tion was unaccounted for in dre calculation of rl and r. Because of this,
the computation of X wilt be in error.

Fortunately, this error can be bounded. Suppose that the overlooked
sinusoids conrnbuted some “error” 6K to the observed sample vector
.x+&x. From this we have cafcufated the Fourier coefficients X+/iX by the
formula

x+tix = r(z+w.

By construction we know that in the case where there is no such aliasing
contribution, X = Ik. Thus, 8X= I&, and 11~1 < 11~[l]&jl. But by
definition K = Ilfll l[f_l/l, and as shown previously, for the L., norm,
Ilrl[ 2 K SO 11~1< K/K, and

IIMI ~ ;IIMI.

That is, K/K represents the degree to which the coefficients of afiasing fre-
quencies are amplified in their contribution to the calculated Fourier
coefficients. Thus, it is very important when tilasing is present to select a
set of time pointa so that K(rl) is smafl.

3: THE APFT ALGORITHM

3.1: Time Point Selection

The conception of the orthogonal-selection afgorirhm came from the
some of theoretical ideas discussed above.

First, we thought that if selecting everrfy-spaced time points was
likely to yield row vectors particulady close to being linearly dependent,
we might be better off selecting time points randomly from a time interval
larger than the period corresponding to the smallest nonzero frequency in
AK. (We chose an inrervaf equaf to three times this period.) Such a
choice is particnkwly attractive given the complexity of the relationship
between the time points and dre orthogonafity of the row vectors; making
any more intelligent choice of time points seem quite difficult.

Second, we realized that in essence the problem in recovering X
from x is that the linear system may be close to being underdetermirred in
a numerical sense. So adding additionrd equations should increase the
accuracy of the calculation of X. In fact, if more than N time points are
cboscn, & becomes a tall rectangular matrix, and its pseudo-inverse r is
a wide rectangular matrix satisfying X = rx.

Oversarnpfing with twice as many randornfy-selected time points as
theoretically necessary proves to be successful it yields a very well condi-
tioned system. However, when using the transform in the context of har-
monic batarrce, all the nonlinear devices must be evaluated at each time
point, which is an expensive operation because of the complexity of the
nonlinear device models. Thrrs overssmpling is a costly remedy. How-
ever, it made it clear that the rows of the tall rl marnx spanned the
space well (in a numerical sense), and we wondered whether some subset
of them might not suffice to do the same job.
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The orthogonal selection algorithm solves just thk problem, from a
~1 whose dimension is 2N by N, where N = 2K – 1, it selects a set of
just N rows, drus requiring no extra time samples. Because of the expense
of sampling, the fact that only the minimum number of time points is
used and not 1.5 to 2 times as marry as required by the other methods, is
one of the significant advantages of the APFT algorithm.

The orthogonal selection algorithm is a variation of the Gram-
Schmidt orthogorratization procedure [dahlquist74]. Its input is the matrix
formed by rarrdomfy choosing twice as many time points as necessmy and
forming the corresponding row vectors, p,. Initially, these vectors all have
the same Euclidean Iength (i.e., 12norm). One of these vectors, say pl, is
chosen arbitmrily. Any component in the direction of pl is removed from
the remaining vectors using

PTPi
Pt+Pt–y

PIPIP1
i=2, . . ..2N. (4)

The vectors that remain are now orthogonal to pl. Since the veetors were
initially the same length, the largest remaining vector was originally most
orthogonal to pl. It is chosen to play the role of pl for the next iteration
of the algorithm. This process repeats until the required N vectors have
been chosen. The time points that correspond to these vectors are the
time points used to form ~]. This afgoridrm is detailed below.

APIT Orthogonal Selection Algorithm

Given:
Ax={O,O)l, ro2, . . . , tO~_l}, the set of frequencies.

Task:
To find a set of N = 2K-I time points that results
conditioned ~1.

Algorithm:
rem. -tr3itr( {lm~:l<k <K})

for(i+l, . . ..2Nl

in a well-

{ ‘ randomo is a function that returns numbers uniformly distri-
buted between O and 1.

t,+- ‘n—randomo

for fj+l, . . ..~

{ argmaxo is a function that returns the index of the largest
member of a set
k = argmax {ljp$’~1: j S i 52N)

5swap(p~), pi)
swap($, Q
for(i +-j, . . ,2N)

W) + py)– PYTPY Py
P1

P?TPY’
}

Results:
The set {t, : 1< i <N} contains the desired time points.

Once the time points are selected, ~1 is constructed with the rows
Pjl). It is easy to verify that the time points were well-chosen either by

calculating the condkion number K = 11~] llI_lll or by computing
& = llrlr – III where I is the identity mafri~ both are excellent measures
of the numericaJ stabifity of the transform.

3.2: Constructing the Transform Matrix

There is another problem which we have heretofore ignored. The
arguments to the sine and cosine functions in (3) are potentially very
large, which results in excessive roundoff error. For example, assume
k, = 2rr109 and ~ = 2rr(109+@. Then U)min= 2rr@ and so the time
points will fall in the range of O to 3~ seconds. Thus, or,t,could be as
large as 1011, which causes two problems. FirsL on most computer SYS-
tems, the trigonometry routines are not designed to handle such large
arguments and wilt return meaningless results. This problem is easily
avoided by subtracting from the argument as marry multiples of 2rr as pos-
sible without making it negative. The second problem is more trouble-
some. The approximately 1010 multiples of 2rT in the argument have no
effect on the result except to reduce its accuracy by about 10 digits.
Since the or,t, product must be formed (and so truncated to a finite number
of digits by the computer) before the multiples of 2rr can be removed, the
important digits are lost and cannot be reelaimed. While this error cannot

be eliminated, it can be controlled by exploiting the way the frequency set
AI is constructed. From (2), the Product @jti cm be written

O),ti = k(klti)+ I(hti).

[1l~ti
Let Vm = fract ~ m=l,2; l<i<N (5)

and OIM= WW’1 + W’Z). (6)

Now ~,~ = m~t, - 2?rn, where n is some integer and ~i~ < 2rT~~).
Since k and 1 are small integers, @h is an appropriate argument to tri-
gonometry routines on all computers. The dominant source of roundoff
error results from multiplying k#2rr by t,,because the product is formed
before the fracto operator (which removes any integer pordon and leaves
only the fractional part) is applied to remove the troublesome muftiples of
2rr. By using (5) and (6), the rourrdoff error can be viewed as resulting
from mundoff error in L1, & and tp Since the t, are chosen randomly,
their roundoff errors are of no concern. The amount of roundoff in k] and
& is predictable and so a warning cart be given if is becomes signitieant
in comparison to ro~n.

3.3: APFT Algorithm Results

The APFT orthogonal selection algorithm requires on the order of
M*N operations, where M is the number of time Wint candidates used and
N is the number of Fourier coefficients. Since we have used M = 2N, the
asymptotic complexity of the afgorithm is the same as that of the matrix
inversion needed to compute r.

We note that while the initialization of the APFT (that is the time
point seleetion, formation of rl and the inversion of rl to find r)
requires on the order of N3 operations, the actrraf forward and inverse
transform requires N2 operations, the same as the DFT. Thus the expen-
sive part of the AFTT is performed only once per set of frequencies; after
this initial overhead has been paid, the APFT is as efficient as the DFT.

To show the numericaf stabifity of our method, we will compare the
condhion number of rl when time points are 1) evenly spaced, 2) rwr-
domfy spaced, and 3) determined by the orthogonal selection algorithm.
The condition number, K, is proportional to the errors in computing the
inverse. In our experiments, c = 10-*6K. Bear in mind that even the DFT,
which is theoretically tire best conditioned algorithm for the simp Ier
periodic case, has a condition number K = N, so the best we could hope
for is linear growth of the condkion number with the number Fourier
coefficients. Observe that as shown by the results given in Figure 1, {he
condition number from orthogonal selection is in fact experimentally
observed to grow linearly with K. That of random selection appeam to
grow quadratically, and that of evenly spaced to grow exponentially.

The case chosen for comparison was with fundamrxrtats kl = 2rrlL09
and k2 = 2rr(109 + fi). Thus, the fundamentals differ by only 1 part in
109. ~so beeause the fundrn-nentds are incommensurable, the Signal is not,,
periodic. Comparisons of the condition numbers are shown in Figure 1
with the order H varying between 1 and 10. To smooth the wide vwia-
tion seen in the results for the case of randorrrfy selected time points, each
condition number plotted is the geometric mean of 10 trials. Similarly,
because dlffererrt intervals give widely varying results for evenly-spaced
points, those condition numbers are geometrically averaged over 10 inter-
vafs ranging from 1.5 to 4.5 times 2rr/to~m. Results obtained from orthog-
onal selection are so consistent that no averaging was needed, as evi-
denced by the smoothness of that curve. Graphing the condition number
clearly shows that both randomly chosen and equally spaced samples will
have accuracy problems when the number of frequencies is large. Orthog-
onal selection from 2N randomly selected time points, the algorithm we
have described, always results in a reasonable condition number. The
table below gives a summary of information on the APFT with the orthog-
orrat selection afgorithm. Execution times were measured on a VAX 8650
running ULTRIX 2.0.

Recall that coefficients of frequencies not in AE can be amplified by
Up to K/K in the process of atiasing. For order H = 10, this amplification
factor equals approximately 10s for evenly spaced points, 2000 for ran-
domly spaced points, and 10 for points chosen using orthogorraf selection.
Thus, even if the coefficients of neglected frequencies are small, for
evenly and randomly spaced points the error 8X due to aliasing may be so
large as to dominate over the desired coefficients X.

There are a couple of details worthy of note. A temptation might

be to compute several matrices ~1 by random time-point selection, md
then use the seleetion that gave the best condition number. This wo,rks
surprisingly well, but (for, say, 10 triafs) it is still 10 to 100 times wcrse
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Figure 1 : Condition number versus order lffor time points
chosen evenly spaced randomly, and using the orthogonal
selection algorithm.

APFT Summary

TT
HKN

13
2 7 :3
3 13 25
4 21 41
5 31 61
6 43 85
7 57 113
8 73 145
91911181
10 111 ] 221

_t-

K

6 2.8x&
24 8.3x10-’7
64 l.lxlo-rf’
113 I1.6x10-16
143 1.lxlr’6

J._
270 2.3xl@6
420 2.9xlCt_16
790 3.3X1O-’6
950 4.8x10-’6
1200 4.6x10_]6

tiN,

17 ma
67 ms

280 ms
1.1 s
3.3 s
8.6 s
20 s
41 s
79 s
142 S

tmm-rolm

o
0.3 ms
1.7 ms
3.6 ms
8.5 ma
17 ms
30 Ins
49 ms
77 ms
l16ms

than orthogonal selection, with no justifying increase in efficiency. Also,
thedifference between the algorithms’ results again increases rapidly with
the order of harmonics. U-nsurpnsingly, the-spread of the condition
numbers obtained from orthogonal selection applied to different sets of
random times is much smaller than that of random selection; thus its
results are not only better but also more predictable.

Finally, the function taking a time pint to a row vector of I__l is
complex; for example, it is unclear how to invert it or how to characterize
its range. Modeling it as randow that is as producing vectors uniformly
distributed in an N-half, gives interesting theoretical results, including
expectations of tire condition numbers obtained from randomly selected
time points and fmm time points chosen by the orthogonal selection

algorithm. We are currently working to develop this theoretical model,
and we hope to be able to report on it in the near future.

& HARMONIC BALANCE

Kundert and Sangiovamri kundert86] show that if a circuit consists
of nonlinear resistors and capacitors as well as independent current
sources and mbitrary linear devices, and if nottaf analysis is used to for-
mulate the circuit equations, then the time domain circuit equation

flv,r) = i(v(t)) + g(v(t)) + j y(t+)v(t)dt + u(t) = O (7)

can be written in the frequency domain as

F(V)= W)+jQQ(W+W+U=O (8)

where F=V represents the node voltages, Fi(v)=I(V) represents the
current through the nonlinear resistors, Fq(v)=Q(V) represents the charge
through the nontinear capacitors, y is the impulse response of the linear
portion of the circuit and Y is its phasor equivalent, Fu=U represent the
current from the input sources, and Ff(v)=F(V) represents the sum of the
current entering the nodes. For (8) to be vati~ it is necessary to assume
that u is periodic, that v is a 10C?11Yasymptotically stable periodic solu-
tion, and that y is causal and asymptotically stable. Assume for simplicity
that (7) describes a one node circui~ and so is a scafar equation.

To evaluate the nonlinear devices in (8) it is necessary to convert
the node voltage spechum V into the waveform v and evahrate the non-
linear devices in the time domain. The response is then converted back
into the frequency domain. Thus, l(V)=Fi(FIV), and similarly

Q(~Fq(~*~. NOW that we have developed the APFT, it can be used
with (8) to allow harmonic balance to be applied to almost-periodic sys-
tems. Assume that v,ueAP(A~) and that a set of time pointa

. . . , tx_l}has been chosen so that ~1 is nonsirrgular. Then
}&&i(rlV) and Q(V)=rq(I__’ V).

Applying Newton-Raphson to solve (8) results in the iteration

J(V@)(VfJ+’) – w?) = -F(w)) (9)

where

The derivation of WW foflows with help from the chain rule.

I(n = ri(r’v)

ai(r’v rlav
af(v = r a,

The derivation of aQ/W is i&ntical. Now everything needed to evaluate
(9) is available. If the sequence generated by (9) converges, its limit
point is the desired solution to (8).

4.1: Harmonic Batance Results

The APFT algorithm has been integrated into Harmonic% our har-
monic balance based circuit simulator. Harmonica was then used to sirmr-
late a GSAS FET [statz87] double-balanced mixer with a 50 mV 5 GHz
RF input signaf and a 500 mV 5.001 GHz LO input signal. The output is
at 1 MHz and passes through a high Q 1 MHz barrdpass lattice filter. The
circuit consists of 6 GSAS FETs and 27 nodes and was simulated with
order H = 5, which corresponds to 31 frequencies. Harmonica requhd
4.5 megabytes of physical memory and 470 seconds on a VAX 8650 to
complete the simulation, though this should improve as the implementa-
tion is polished. The cireuiL with the center frequency of the output filter
adjusted accordingly, was also simulated with the LO frequency set as
close as lHz away from the 5 GHz RF with no apparent change in accu-
racy. Note that the combination of the widely separated frequencies and
the high Q output filter make it prohibitively expensive to find the steady
state response of this circuit with a time domain simulator.

5 CONCLUSION

A new afmost-pericdic Fourier transform was presented that is both
efficient and accurate. ThN transform was combmed with harmonic bst-
ance to allow circuits with wi&ly separated frequencies to be accurately
simulated. Work is continuing on the APFT and its application in har-
monic bafance to further increase the efficiency the algorithm and to
explore its error mechanisms.
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