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ABSTRACT

Harmonic balance is a powerful technique for the simulation of
mildly nonlinear microwave circuits. This technique has had limited
application for the analysis of almost-periodic circuits, such as mixers, due
to the difficulties of transforming waveforms from the time domain to the
frequency domain and vice versa. In this paper, a new Fourier transform
algorithm for almost-periodic functions (APFT) is developed that is both
efficient and accurate. Unlike previous attempts to solve this problem, the
new algorithm does not constrain the input frequencies and uses the
theoretically minimum number of time points.

1: INTRODUCTION

Harmonic balance [kundert86] is a powerful technique for the simu-
lation of nonlinear microwave circuits. Harmonic balance requires the
evaluation of the device equations in the frequency domain for linear ele-
ments and in the time domain for nonlinear elements. The discrete
Fourier transform (DFT) is used to provide the conversion between the
two domains when the signals are periodic. Currently there is no satisfac-
tory way to analyze nonlinear circuits such as mixers that have two or
more input signals with arbitrary input frequency and power, and hence
have signals that are nonperiodic.

Signals in mixers are made up of several sinusoids at possibly
nonharmonically related frequencies, and hence are almost periodic
fbohrd7]. This paper introduces an accurate and efficient algorithm, the
APFT, for computing the forward and inverse Fourier transforms for
almost-periodic functions. Unlike previous methods, the APFT does not
constrain the input frequencies and uses the theoretical minimum number
of time points. Also presented will be the implementation of a harmonic
balance-based circuit simulator that uses the new Fourier transform for
almost-periodic functions.

1.1: Definitions

A waveform x is periodic with period T if x(f) = x(++T) for all . A
waveform is almost periodic if it can be uniformly approximated by the
sum of at most a countable number of sinusoids [hale80]. Thus,
waveforms of the form

Xy = Y (Xgcosmy + Xisinwy), I5H)

(A)kEA

where A = {®, ©;, @, - - } and X§, XJeR, are almost periodic. We
use AP(A) to denote the set of all real-valued almost-periodic functions
over the set of frequencies A. If A is finite with n elements, it is denoted
A,. When working with mixers, A consists of the sum and difference fre-
quencies of usually two independent fundamental frequencies A, A, and
their harmonics, though the transform that we present is not limited to this
special case. For a mixer, A has the form

Al My ={olo=k+ gy kle{ -+ ~1,0,1, ---1}. (2

If all frequencies ®; € A are distinct (i.e. @, # w,; for all k # I), then there
exists an invertible linear operator F that maps x to X, where

X=[X5, X3, X5, X, -+ };
this operator is the Fourier transform.

Let x be a real-valued almost-periodic function, xe AP(A). For the
problem of transforming between x and X to be numerically tractable, it is
necessary to make A finite. In the case of a mixer, where A = A(Aq, Ay),
we assume that the Fourier coefficients of frequencies beyond a given
order H are negligible, so that the truncated set of frequencies becomes
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The truncated set has K = H? + H + 1 frequencies. While the examples
we present take this form, again, the APFT algorithm is not limited to this
case.

1.2: The Fourier Transform

By considering only a finite number of frequencies, it is possible to
sample a waveform at a finite number of time points and calculate its
Fourier coefficients. Since the spaces involved are now finite dimensional,
the first representation theorem of linear algebra shows that the discrete
Fourier transform (DFT) and its inverse (IDFT) can be viewed as matrices
acting on the vectors of samples and coefficients, respectively. That is,

Xo |
1  coswif sin®yfy COSWk-1f1 sing_1# x¢ x(t)
1 cosmify  sinGyf COSWg1fy  SinWg_1f x§ x(ty)
1 coswfy sin®; f3 COSM-113 sinwg_123 s =1 x()
. . . . . : .
: : K : e X$ .
1 cos®ityg1 SINW1Hx-1 COSWg_1tog—1 SINWg-1f2x1 Xﬁl x(tx-1)
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(3)

If the frequencies ®, are distinct, this system is invertible (for almost all
choices of time points), and can be written in compact form as 'x=x
Inverting I gives T'x=X, and so I' and I'! are a discrete Fourier
transform pair.

The DFT is a special case of (3) in which o= ko and
t,, = mT/(2K-1), ie. when the frequencies are all multiples of a single
fundamental and the time points are chosen equally spaced within its
period. DFT and its inverse, IDFT, have the desirable property of being
well conditioned, which is to say that very little error is generated when
transforming between x and X. From the matrix viewpoint, the high accu-
racy of DFT corresponds to the fact that the rows of I'! are orthogonal.
(We will say a bit more about this later.) Unfortunately, DFT and IDFT
are defined only for periodic signals.

Given a finite set Ag of distinct frequencies o, and a set of time
points, we will say that I" and T\, are one implementation of the almost-
periodic Fourier transform for AP(Ag). To perform either the forward
(using T') or inverse (using I transform requires just a matrix multiply,
or (2K-1)? operations, once I' and T™! are known, which is the same
number of operations required by the DFT.

The difficulty is that if the time points are not chosen carefully, !
can be very ill-conditioned. A particularly bad strategy for choosing time
points when signals are not periodic seems to be that of making them
equally spaced. Unlike the periodic case, it is in general impossible to
choose a set of time points over which the sampled sinusoids at frequen-
cies in Ay are orthogonal. In fact, it is common for evenly sampied
sinusoids at two or more frequencies to be nearly linearly dependent,
which causes the severe ill-conditioning problems encountered in practice.
The main contribution of this paper is the development of an algorithm
for choosing time points which gives a well-conditioned system. We will
present previous work with the same goal and then present the APFT
algorithm.

1.3: Previous Work

Ushida and Chua [ushida84] use equally spaced points, but avoid
the ill-conditioning problem by using extra time points. In doing so, the
matrix ! becomes a tall rectangular matrix. To make the system square
again, both sides of (3) are multiplied by T HT, which results in
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YT =
Thus (3) is converted into a least squares problem that is solved in the
traditional manner using the normal equation. Unfortunately, the normal
equation is notoriously ill-conditioned and so a new ill-conditioning prob-
lem may be introduced.

Gilmore [gilmore86] samples the waveform using several small sets
of equally spaced time points. The DFT is then applied to each individu-
ally, however these sets have too few time points to prevent aliasing in
the computed spectra. The aliasing is eliminated by taking an appropriate
linear combination of the computed spectra. Since the DFT is used, the
method is constrained to periodic signals, though it can be much more
efficient that the standard DFT on sparse spectra. Its numerical stability is
unknown.

2: THEORETICAL BACKGROUND
2.1: Condition Number and Orthonormality

It is now necessary to discuss the conditioning of a system of equa-
tions, a concept alluded to earlier. A good general discussion can be
found in [golub83]. From our perspective, the condition number of a
matrix is important because it is a measure of how much errors are
amplified during the course of solving a matrix equation. For example, in
the presence of no other errors, the uncertainty in the result is given by
the condition number times the roundoff error. Formally, the condition
number of 2 matrix I" is defined as «(T) = {1} T

The problem of ill-conditioning in (3) can be visualized by consid-
ering each equation as deﬁningr a hyperplane in the Euclidian space R¥*-,
Let p, eR*! be such that p! is the ith row in I, then the ith hyper-
plane is defined by piX = x(t,). Thus, p; is a vector orthogonal to the
hyperplane. The solution to (3) is the intersection of all the hyperplanes.
If the system is degenerate because two or more planes are coincident,
then the intersection is not a single point and the system of equations has
an infinite number of solutions. If there are no coincident hyperplanes, but
two or more of the planes are nearly parallel, then a unique solution
exists, however very high precision arithmetic will be needed to find it
accurately.

Because a system is degenerate if and only if the defining matrix
has zero determinant, it is natural to try to relate the determinant to the
condition number. In fact, though, there is no direct connection between
determinant and condition number [golub83]. But a matrix is also degen-
erate if and only if there is a linear dependence among its row vectors,
and so it is also natural to suppose that a matrix will have small (good)
condition number if its rows are relatively orthogonal (and thus ‘‘far”
from being linearly dependent). We now prove a statement along these
lines.

Consider an invertible nxn matrix A. Suppose that the rows a, of A,
regarded as vectors, are nearly orthonormal. In particular, suppose that
each vector has unit length and that the orthogonal component of each
vector a; with respect to the space S, spanned by the others is at least
o < 1 (it would be exactly 1 if the vectors were precisely orthonormal).

Now, when forming the product A™A = I, each row of A™ can be
thought of as determining a linear combination of the rows of A, which
yields a row in the identity matrix — a vector of length 1. Suppose that
the ith element in a row of A~! had absolute value »> l/o. Then the
component of the resulting linear combination in the direction orthogonal
to S, is determined solely by ra;, and will have magnitude greater than
roo> 1. Since the linear combination was to be a vector of unit length,
this is a contradiction. Thus no element of any row of A7Y, and thus no
element of A}, has absolute value greater than 1/

From this it follows that since A€ R™, [|47". (the L. norm of A™)
is no more than w/o. Also, the fact that A was to have row vectors of
norm 1 means that |JAfl. is no more than , so that k(4) < n*/c.

In short, the near-orthonormality of a matrix places an upper bound
on its condition number.

2.2: Condition Number and Time Point Selection

Given a finite set of frequencies Ak, any set of N = 2K — 1 time
points yields a ! whose row vectors (consisting of a single 1 anq a set
of sine-cosine pairs) have norms between K and 1+V2(K-1), which is ade-
quate to satisfy the essence of the demand above that the row vectors be
of unit length. If we could find a set of time points producing row vectors
that were also nearly orthogonal, according to the definition above, we
would be assured of having a well-conditioned T".
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But the relation between the time points and the orthogonality of the
resultant row vectors is clearly rather involved; finding a set of times
which define nearly-orthogonal row vectors seems to be quite difficult.
One approach might be to write down a priori a set of orthogonal vectors
and then look for time points that generate vectors close to these pre-
specified ones; this is equivalent to defining the approximate phases of
each sine wave and looking for a time where every wave will be in the
appropriate phase. This in turn can be thought of as a set of approximate
equalities modulo 2x, but it is far from clear under what circumstances a
solution exists or how to go about finding it.

Another approach might be to choose time points equally spaced
within a time interval larger than the period corresponding to the smallest
nonzero frequency in Ag. As we show later however, experimentally this
method of time-point selection gives the worst results of any method we
tried.

2.3: Condition Number and Aliasing

As mentioned previously, the condition number provides a measure
of how much error is amplified during a calculation. Roundoff is one
source of error in the transform, but there is another that is normally much
larger, and that is error due to aliasing. Aliasing occurs when we truncate
A to make it finite. The Fourier coefficients of the frequencies omitted
from A are presumably small but may not be exactly 0, and thus these
frequencies make a contribution to the vector x of samples; this contribu-
tion was unaccounted for in the calculation of I' and I". Because of this,
the computation of X will be in error.

Fortunately, this error can be bounded. Suppose that the overlooked
sinusoids contributed some ‘‘error’’ 8x to the observed sample vector
x+8x. From this we have calculated the Fourier coefficients X+3X by the
formula

X+3X = T(x+8x).

By construction we know that in the case where there is no such aliasing
contribution, X =TIx. Thus, 8X =I'dx, and [8X]|<|[]|[ldd] But by
definition ¥ =|0J|CY, and as shown previously, for the /. norm,
i = K. Soj| < wKkK, and

Iox1 < 18l

That is, w/K represents the degree to which the coefficients of aliasing fre-
quencies are amplified in their contribution to the calculated Fourier
coefficients. Thus, it is very important when aliasing is present to select a
set of time points so that ¥(I"™) is small.

3: THE APFT ALGORITHM
3.1: Time Point Selection

The conception of the orthogonal-selection algorithm came from the
some of theoretical ideas discussed above.

First, we thought that if selecting evenly-spaced time points was
likely to yield row vectors particularly close to being linearly dependent,
we might be better off selecting time points randomly from a time interval
larger than the period corresponding to the smallest nonzero frequency in
Ag. (We chose an interval equal to three times this period.) Such a
choice is particularly attractive given the complexity of the relationship
between the time points and the orthogonality of the row vectors; making
any more intelligent choice of time points seem quite difficult.

Second, we realized that in essence the problem in recovering X
from x is that the linear system may be close to being underdetermined, in
a numerical sense. So adding additional equations should increase the
accuracy of the calculation of X, In fact, if more than N time points are
chosen, I'* becomes a tall rectangular matrix, and its pseudo-inverse T is
a wide rectangular matrix satisfying X = I'x,

Oversampling with twice as many randomly-selected time points as
theoretically necessary proves to be successful: it yields a very well condi-
tioned system. However, when using the transform in the context of har-
monic balance, all the nonlinear devices must be evaluated at each time
point, which is an expensive operation because of the complexity of the
nonlinear device models. Thus oversampling is a costly remedy. How-
ever, it made it clear that the rows of the tall ™! matrix spanned the
space well (in a numerical sense), and we wondered whether some subset
of them might not suffice to do the same job.



The orthogonal selection algorithm solves just this problem; from a
! whose dimension is 2N by N, where N = 2K — 1, it selects a set of
just N rows, thus requiring no extra time samples. Because of the expense
of sampling, the fact that only the minimum number of time points is
used, and not 1.5 to 2 times as many as required by the other methods, is
one of the significant advantages of the APFT algorithm.

The orthogonal selection algorithm is a variation of the Gram-
Schmidt orthogonalization procedure [dahlquist74]. Its input is the matrix
formed by randomly choosing twice as many time points as necessary and
forming the corresponding row vectors, p,. Initially, these vectors all have
the same Euclidean length (i.e., /, norm). One of these vectors, say p;, is
chosen arbitrarily. Any component in the direction of p; is removed from
the remaining vectors using

pip;
p—p - i=2, -+ ,2N. 4
oTp P1 “)

1P1

The vectors that remain are now orthogonal to p;. Since the vectors were
initially the same length, the largest remaining vector was originally most
orthogonal to p;. It is chosen to play the role of p; for the next iteration
of the algorithm. This process repeats until the required N vectors have
been chosen. The time points that correspond to these vectors are the
time points used to form IL. This algorithm is detailed below.

APFT Orthogonal Selection Algorithm
Given:
AK= {0, Wy, Wy, - "
Task:
To find a set of N=2K-1 time points that results in a well-
conditioned I,

, Wg_1}, the set of frequencies.

Algorithm:
Wpyn < min( {1 1 Sk<K})
forfe1, -+ ,2N)

{ random() is a function that returns numbers uniformly distri-
buted between 0 and 1.

T
t, random()
1 min . . T
P« [1 cosmyt; sinw COSOx_1f, SinOx_it, |
1
for(je1, ==+ ,N)

{ argmax() is a function that returns the index of the largest
member of a set
k= argmaxg{ﬂpﬂ] 1jSis2N)
swap(p, pf?)
swap(t, 1)
foriej, ~-- ,2N)
pP P
pI) ¢ pf) — L)
T J
of"ef
}
Results:
The set {t, : 1 < i < N} contains the desired time points.

Once the time points are selected, ! is constructed with the rows
piD. It is easy to verify that the time points were well-chosen either by
calculating the condition number x =[0Iy or by computing
£ =|['I" - I'|| where [ is the identity matrix; both are excellent measures
of the numerical stability of the transform.

3.2: Constructing the Transform Matrix

There is another problem which we have heretofore ignored. The
arguments to the sine and cosine functions in (3) are potentially very
large, which results in excessive roundoff emror. For example, assume
A =2m10° and A, = 27(10°++2). Then @y, =2mV2 and so the time
points will fall in the range of 0 to 3¥% seconds. Thus, w, could be as
large as 10'!, which causes two problems. First, on most computer Sys-
tems, the trigonometry routines are not designed to handle such large
arguments and will return meaningless results. This problem is easily
avoided by subtracting from the argument as many multiples of 2 as pos-
sible without making it negative. The second problem is more trouble-
some. The approximately 10'® multiples of 27 in the argument have no
effect on the result except to reduce its accuracy by about 10 digits.
Since the @y, product must be formed (and so truncated to a finite number
of digits by the computer) before the multiples of 21 can be removed, the
important digits are lost and cannot be reclaimed. While this error cannot

be eliminated, it can be controlled by exploiting the way the frequency set
Ag is constructed. From (2), the product @y; can be written

o = kAt) + 1Qq).

Let = fract [M] m=12 1<i<N )
2n
and Sum = 2n(ky, + Iy,p). 6)

Now 0, = @, — 21n, where n is some integer and |p;,] < 2rddHA).
Since k and I are small integers, ¢, is an appropriate argument to tri-
gonometry routines on all computers. The dominant source of roundoff
error results from multiplying A,/2% by #,, because the product is formed
before the fract() operator (which removes any integer portion and leaves
only the fractional part) is applied to remove the troublesome multiples of
2n. By using (5) and (6), the roundoff error can be viewed as resulting
from roundoff error in A;, A, and ¢, Since the ¢ are chosen randomly,
their roundoff errors are of no concern. The amount of roundoff in A, and
A, is predictable and so a warning can be given if is becomes significant
in comparison 0 ®py;g.

3.3: APFT Algorithm Results

The APFT orthogonal selection algorithm requires on the order of
M2N operations, where M is the number of time point candidates used and
N is the number of Fourier coefficients. Since we have used M = 2N, the
asymptotic complexity of the algorithm is the same as that of the matrix
inversion needed to compute I'.

We note that while the initialization of the APFT (that is the time
point selection, formation of ! and the inversion of I'! to find T')
requires on the order of N> operations, the actual forward and inverse
transform requires N? operations, the same as the DFT. Thus the expen-
sive part of the APFT is performed only once per set of frequencies; after
this initial overhead has been paid, the APFT is as efficient as the DFT.

To show the numerical stability of our method, we will compare the
condition number of I'! when time points are 1) evenly spaced, 2) ran-
domly spaced, and 3) determined by the orthogonal selection algorithm.
The condition number, ¥, is proportional to the errors in computing the
inverse. In our experiments, ¢ = 107®«. Bear in mind that even the DFT,
which is theoretically the best conditioned algorithm for the simpler
periodic case, has a condition number x = N, so the best we could hope
for is linear growth of the condition number with the number Fourier
coefficients. Observe that as shown by the results given in Figure 1, the
condition number from orthogonal selection is in fact experimentally
observed to grow linearly with K. That of random selection appears to
grow quadratically, and that of evenly spaced to grow exponentially.

The case chosen for comparison was with fundamentals A; = 2110°
and A, = 21(10° + ¥2). Thus, the fundamentals differ by only 1 part in
10°%; also, because the fundamentals are incommensurable, the signal is not
periodic. Comparisons of the condition numbers are shown in Figure 1
with the order H varying between 1 and 10. To smooth the wide varia-
tion seen in the results for the case of randomly selected time points, each
condition number plotted is the geometric mean of 10 trials. Similarly,
because different intervals give widely varying results for evenly-spaced
points, those condition numbers are geometrically averaged over 10 inter-
vals ranging from 1.5 to 4.5 times 21/0;,. Results obtained from orthog-
onal selection are so consistent that no averaging was needed, as evi-
denced by the smoothness of that curve. Graphing the condition number
clearly shows that both randomly chosen and equally spaced samples will
have accuracy problems when the number of frequencies is large. Orthog-
onal selection from 2N randomly selected time points, the algorithm we
have described, always results in a reasonable condition number. The
table below gives a summary of information on the APFT with the orthog-
onal selection algorithm. Execution times were measured on a VAX 8650
running ULTRIX 2.0.

Recall that coefficients of frequencies not in Ag can be amplified by
up to WK in the process of aliasing. For order H = 10, this amplification
factor equals approximately 10® for evenly spaced points, 2000 for ran-
domly spaced points, and 10 for points chosen using orthogonal selection.
Thus, even if the coefficients of neglected frequencies are small, for
evenly and randomly spaced points the error 8X due to aliasing may be so
large as to dominate over the desired coefficients X.

There are a couple of details worthy of note. A temptation might
be to compute several matrices I''! by random time-point selection, and
then use the selection that gave the best condition number. This works
surprisingly well, but (for, say, 10 trials) it is still 10 to 100 times worse
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Figure 1 : Condition number versus order H for time points
chosen evenly spaced, randomly, and using the orthogonal
selection algorithm.

APFT Summary

H K N X € init boranstorm
1 3 5 6 28107 [ 17 ms 0

2 7 13 24 | 83x107Y7 | 67ms | 03 ms
3] 13 ] 25 64 | 1.I1x107'6 | 280 ms | 1.7 ms
4 | 21 | 41 113 | 1.6x107¢ | 115 3.6 ms
5131 ] 61 | 143 | L.1x10718 | 335 8.5 ms
6 | 43 | 85 | 270 | 23x10716 | 865 17 ms

7 1 57 | 113 | 420 | 29x107'¢ | 20 30 ms

8 | 73 | 145 | 790 | 3.3x107%6 41 s 49 ms

9 | 91 | 181 | 950 | 4.8x107'¢ | 795 77 ms

10 | 111 | 221 | 1200 | 4.6x1071¢ | 1425 | 116 ms

than orthogonal selection, with no justifying increase in efficiency. Also,
the difference between the algorithms’ results again increases rapidly with
the order of harmonics. Unsurprisingly, the spread of the condition
numbers obtained from orthogonal selection applied to different sets of
random times is much smaller than that of random selection; thus its
results are not only better but also more predictable.

Finally, the function taking a time point to a row vector of I is
complex; for example, it is unclear how to invert it or how to characterize
its range. Modeling it as random, that is as producing vectors uniformly
distributed in an N-ball, gives interesting theoretical resuits, including
expectations of the condition numbers obtained from randomly selected
time points and from time points chosen by the orthogonal selection
algorithm. We are currently working to develop this theoretical model,
and we hope to be able to report on it in the near future.

4: HARMONIC BALANCE

Kundert and Sangiovanni [kundert86] show that if a circuit consists
of nonlinear resistors and capacitors as well as independent current
sources and arbitrary linear devices, and if nodal analysis is used to for-
mulate the circuit equations, then the time domain circuit equation

t

St = i) + 4(v() + fy(t—’t)v(t)d! +u®=0 )

can be written in the frequency domain as
F(Vy=IV)+jQWV)+ YW+ U=0 ®)

where Fv=V represents the node voltages, Fi(v)=I(V) represents the
current through the nonlinear resistors, Fg(v)=Q(V) represents the charge
through the nonlinear capacitors, y is the impulse response of the linear
portion of the circuit and Y is its phasor equivalent, Fu=U represents the
current from the input sources, and Ff(v)=F(V) represents the sum of the
current entering the nodes. For (8) to be valid, it is necessary to assume
that u is periodic, that v is a locally asymptotically stable periodic solu-
tion, and that y is causal and asymptotically stable. Assume for simplicity
that (7) describes a one node circuit, and so is a scalar equation.

To evaluate the nonlinear devices in (8) it is necessary to convert
the node voltage spectrum V into the waveform v and evaluate the non-
linear devices in the time domain. The response is then converted back
into the frequency domain. Thus, I(V)=Fi(F'V), and similarly

O(V)=Fq(F'V). Now that we have developed the APFT, it can be used
with (8) to allow harmonic balance to be applied to almost-periodic sys-
tems. Assume that v,ueAP(Ay) and that a set of time points
{ts t1, " , tax1} has been chosen so that ! is nonsingular. Then
IWV)=TiT'V) and Q(V)=Tq(T'V).

Applying Newton-Raphson to solve (8) results in the iteration

JYOYWED — vy = —F(V) ©)
where

L9 _ A 00
JWV) = Fa av”gav”'

The derivation of 8//0V follows with help from the chain rule.
IVy = T{TY)
|
AW) = ri(l;—v)r‘av

AWV) _ LTV
I\ ov

The derivation of 8Q/0V is identical. Now everything needed to evaluate
(9) is available. If the sequence generated by (9) converges, its limit
point is the desired solution to (8).

4.1: Harmonic Balance Results

The APFT algorithm has been integrated into Harmonica, our har-
monic balance based circuit simulator. Harmonica was then used to simu-
late a GaAs FET [statz87] double-balanced mixer with a 50 mV § GHz
RF input signal and a 500 mV 5.001 GHz LO input signal. The output is
at 1 MHz and passes through a high Q 1 MHz bandpass lattice filter. The
circuit consists of 6 GaAs FETs and 27 nodes and was simulated with
order H =5, which corresponds to 31 frequencies. Harmonica required
4.5 megabytes of physical memory and 470 seconds on a VAX 8650 to
complete the simulation, though this should improve as the implementa-
tion is polished. The circuit, with the center frequency of the output filter
adjusted accordingly, was also simulated with the LO frequency set as
close as 1Hz away from the 5 GHz RF with no apparent change in accu-
racy. Note that the combination of the widely separated frequencies and
the high Q output filter make it prohibitively expensive to find the steady
state response of this circuit with a time domain simulator.

5: CONCLUSION

A new almost-periodic Fourier transform was presented that is both
efficient and accurate. This transform was combined with harmonic bal-
ance to allow circuits with widely separated frequencies to be accurately
simulated. Work is continuing on the APFT and its application in har-
monic balance to further increase the efficiency the algorithm and to
explore its error mechanisms.
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